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Abstract

We present a method of topologically morphing physical objects into user-defined

shapes. We take advantage of the material point method’s (MPM) ability to implicitly

handle topological change. In addition, we define two different loss functions which can

measure the ”distance” between MPM bodies. We show that minimizing one of these

loss functions by controlling deformation gradients can lead to interesting and novel

animations. Beyond just target shapes, we show that there are many other parameters

users can control to tune the animation to their liking.
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Figure 1: Our method based on deformation gradient control can produce animations of

topologically changing materials. The MPM body starts out in its initial shape (left), then

begins to deform its topology (middle left), changing topology and ejecting mass (middle

right), until finally reaching the target shape (right). The colors red, green, and blue repre-

sent areas of high, medium, and low mass. The blob decided that ejecting its own mass was

the fastest way it could decrease its loss function.
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1 Introduction

Adding physics to your animations is really hard without the help of a physical simulator.

However, even with a physical simulator, a new problem arises, which is controlling the

physical simulation in a desired way. Our goal is to take advantage of the new and hot

material point method (MPM) and emerging field of differentiable physical simulators to add

new control methods to physics-based animation. Our focus is on controlling 2D material

point method simulations in an artistic way, though many of the principals can be applied

to 3D simulations.

In this thesis, we present a method for producing physics-based animations to control

the movement of an object, morph an object into another shape or topology, and move the

colors of an image around. We leverage the unique properties of MPM, namely the lack of a

set topology for the simulated objects which allows for simple deformation control. We then

present a handful number of results, and ways to improve our method.
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2 Related Work

2.1 Material Point Method

2.1.1 MPM formulations

The material point method (MPM) emerged as a particle-in-cell method for solid mechanics

[Sulsky et al., 1995]. MPM was first introduced to computer graphics when it was used to

simulate snow for Disney’s Frozen [Stomakhin et al., 2013]. Jiang et al. [Jiang et al., 2016]

provided the first educational resource on MPM for computer graphics. Hu et al. [Hu et al.,

2018a] reformulated MPM using a moving-least squares approach.

2.1.2 MPM topology

The main advantage of using a particle-in-cell method such as MPM is its implicit handling

of topological change, as opposed to mesh based methods such as Finite Element Method

(FEM) where remeshing and mesh distortion can become a significant computational prob-

lem. Wang et al. [Wang et al., 2019] explored methods for explicitly handling and tracking

topological change in MPM. Continuum damage and fracture mechanics have also been

applied to MPM [Wolper et al., 2019], producing impressive fracture simulations. In this

work, we have decided to stick to using MPM’s implicit topological handling due to ease of

implementation.

2.2 Animation-Control

2.2.1 External Force Control

McNamara et al [McNamara et al., 2004] use a combination of Gaussian wind forces to control

the animation of fluids and gases. They also introduce the idea of using mass sources the

control of level-set fluids. Gentle external forces have also been used for real-time interactive

control of deformable objects [Barbič and Popović, 2008].
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2.2.2 Internal Force Control

The principal of control for elastically deformable characters by only creating internal energy

was introduced by Coros et al. [Coros et al., 2012]. When control forces are generated

only from an internal elastic potential, momentum is automatically conserved. This avoids

problems of external control methods, where motion can seem non-physical and unrealistic.

However, their formulation faces the limits of a finite element mesh such as strict topology.

Hu et al. used actuator stresses to control soft robotics simulated in MPM [Hu et al., 2018b],

but these examples did not include any topology change.
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3 MLS-MPM

We will use MLS-MPM [Hu et al., 2018a], a variant of MPM that is computationally more

efficient while also being easier to implement. We will not go into detail the derivations

behind MPM, the reader is encouraged to go to [Hu et al., 2018a] for MLS-MPM and [Jiang

et al., 2016] for MPM in general. We will also follow MPM in graphics notation, that is

using subscripts i, j, k when referring to grid nodes and subscripts p, q, r when referring to

particles. The MLS-MPM simulation cycle is broken down into three steps:

3.1 Particle-to-grid transfer (P2G)

Particle properties are transferred to the grid in this step. In the standard case, these would

be mass mp and momentum mpv
n
p . Momentum is transferred using the Affine-Particle-in-

Cell method (APIC) [Jiang et al., 2015] and a moving least squares force discretization [Hu

et al., 2018a], weighted by a cubic B-spline kernel N .

mn
i =

∑
i

N(xi − xn
p )mp (1)

pn
i =

∑
p

N(xi − xn
p )[mpv

n
p + (− 3

∆x2
∆tV 0

p Pn
pF

nT
p +mpC

n
p )(xi − xn

p )] (2)

3.2 Grid operations

Grid velocity is computed by dividing grid momentum by grid mass.

vn
i =

1

mn
i

pn
i (3)

3.3 Grid-to-particle transfer (G2P)

vn+1
p =

∑
i

N(xi − xn
p )vn

i (4)

Cn+1
p =

3

∆x2

∑
i

N(xi − xn
p )vn

i (xi − xn
p )T (5)

Fn+1
p = (I + ∆tCn+1

p )Fn
p (6)
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xn+1
p = xn

p + ∆tvn+1
p (7)

The MPM algorithm is then just a P2G, grid update, and G2P operation in a loop.
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4 MPM as a Computation Graph

4.1 Gradient computation

We can view one timestep of MPM as a computation graph, where the nodes are both the

material points and the grid nodes. The connections between material points and grid nodes

are made if they are within range via the shape functions used in the MPM simulation. We

can view this computation graph as one layer of a network of layers, each layer corresponding

to a timestep. Thus, by using the chain rule, the gradient of one variable can be taken with

respect to any backward dependent variable. We refer to the appendix of Hu et al. [Hu

et al., 2018b] which provides many of the gradients we need.

4.2 Gradient Descent

Now that we have a method for computing accurate gradients, we can perform any gradient-

based optimization method. We write in pseudocode how to perform gradient descent on

MPM to optimize a given loss function with respect to some control parameters in Algorithm

1. Note that we can save computation time by controlling parameters on a reduced number

of control timesteps. We define a ”temporal iteration” as one pass of gradient descent on all

the control timesteps. Our version of gradient descent uses a line search to make sure the

loss function is decreasing. We also check for convergence based on the magnitude of the

gradient. We note that looking into more sophisticated optimization methods may be worth

it for future work.
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Algorithm 1: MPM Spacetime Control

Given MPM point cloud, simulation parameters, and n = number of timesteps;

Set up spacetime computation graph;

for i = 1; i ≤ totaltemporaliterations; i+ + do

for each control timestep do

Run Forward Simulation;

Compute Loss;

Compute Gradients w.r.t. control parameters of current timestep;

Perform Gradient Descent;

end

end
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Figure 2: A solid MPM circle in its initial rest state (left), and its final rest state (right)

after setting the deformation gradients to
(
0.8 0
0.2 0.8

)
.

5 Deformation Gradient Control

5.1 Deformation gradients: MPM vs FEM

Deformation gradients are computed from tetrahedral rest-states in FEM Sifakis and Bar-

bic [2012]. MPM, on the other hand, numerically integrates deformation gradients using

equation 6:

Fn+1
p = (I + ∆tCn+1

p )Fn
p (6 revisited)

This method of calculating deformation gradients has its disadvantages, such as introduc-

ing numerical plasticity. On the other hand, MPM bodies can be expanded, contracted, and

sheared easily just by modifying deformation gradients, as seen in Fig. 2. This treatment of

deformation gradients gives us a convenient tool for controlling plastic deformations (shape

change) of MPM bodies.

5.2 Control Deformation Gradients

We add a control deformation gradient variable Fn
pc to each material point. This control

variable is used in addition to the regular deformation gradient Fn
p + Fn

pc. The key difference

is that it is not updated by the simulation, only the regular deformation gradient is as seen

in equation 8. This control deformation gradient is instead going to be controlled by our

optimization.
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Fn+1
p = (I + ∆tCn+1

p )(Fn
p + Fn

pc) (8)

5.3 Elastic model

We use the hyperelastic constitutive model of fixed-corotational elasticity for our simulations

for its simplicity [Stomakhin et al., 2012], [Jiang et al., 2016]. Note that hyperelastic materials

do not experience any plastic deformation normally. Deformation gradient control is what

introduces plastic deformation, which produces shape and topology change.

P(F) =
∂Ψ

∂F
= 2µ(F −R) + λ(J − 1)JF−T (9)

5.4 Position loss function

To automatically control deformation gradients, we introduce a particle position loss function

in Equation 10.

L(C) =
N−1∑
p=0

1

2
‖xn

p − xn
pu‖2 (10)

Where C is a spacetime control tensor of deformation gradients, and subscript u denotes

that the value is generated from user-input. Using this loss function, we are able to generate

both deformation and movement based results, shown in Fig. 3.

The limitations of this loss function are that the target shape must be defined as a point

cloud, where each point maps to a point in the control point cloud. Complications arise

when the target shape can’t be represented by an affine transformation of the control point

cloud. Deciding how to map the control points can become a complicated transportation

problem, which we currently do not address. Another limitation with defining target points

is that the control points have only one desired final destination. An animator may be more

interested in the collective MPM body deforming into the target shape, disregarding where

each individual control point ends up.
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Figure 3: Control examples using the position loss function (10). (Top) an mpm circle

expanding in a zero gravity environment. (Bottom) an mpm circle jumping in a gravity

environment. The red particles are the MPM points we are controlling, while the green

particles represent the target positions of the points. The deformation gradients of the

particles have also been mapped to the circles to form ellipses.
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5.5 Mass loss function

To alleviate the aforementioned problems of the position loss function, we define a mass loss

function on the MPM grid nodes in Equation 11.

L(C) =
M−1∑
i=0

1

2
‖mn

i −mn
iu‖2 (11)

This function allows us to easily define a target shape. We use image files to create the

target point cloud, which in turn is used to create the target mass grid. The complicated

transportation problem from the position loss function is solved in the mass loss function

using the MPM grid. This allows us to create topology changing examples, for example Fig.

1.

5.6 Color loss function

Another interesting prospect with deformation gradient control is animating changing colors

fields. We introduce a new color vector cp to the material points, and a color-mass ci vector

to the grid nodes. The color-mass vector on the grid nodes is calculated just like momentum

is:

cn
i =

∑
p

N(xi − xn
p )mn

pc
n
p (12)

With this we can define a color-loss function:

L(C) =
M−1∑
i=0

1

2
‖cn

i − cn
iu‖2 (13)

With this new loss function, we can attempt to create animations where the colors of an

object are rearranged.
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6 MLS-MPM Gradients

Here we show the gradients used for our mass-loss function. The majority of these gradients

with respect to a general loss function were derived in [Hu et al., 2018b]. The main change

we make is the use of the control deformation gradient term Fn
pc. We also choose to use

cubic B-spline kernels N instead of quadratic B-spline kernels. Finally, we introduce a drag

coefficient γ in the P2G momentum equation to improve stability of the simulation and also

add more realism.

6.1 Variable Dependencies

The forward simulation comes from the following equations:

Pn
p = Pn

p (Fn
p + Fn

pc) (14)

mn
i =

∑
i

N(xi − xn
p )mp (15)

pn
i =

∑
p

N(xi − xn
p )

[
mpv

n
p (1−∆tγ) + (− 3

∆x2
∆tV 0

p Pn
p (Fn

p + Fn
pc)

T +mpC
n
p )(xi − xn

p )

]
(16)

vn
i =

1

mn
i

pn
i (17)

vn+1
p =

∑
i

N(xi − xn
p )vn

i (18)

Cn+1
p =

3

∆x2

∑
i

N(xi − xn
p )vn

i (xi − xn
p )T (19)

Fn+1
p = (I + ∆tCn+1

p )(Fn
p + Fn

pc) (20)

xn+1
p = xn

p + ∆tvn+1
p (21)
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The forward variable dependency is thus:

xn+1
p ←− xn

p ,v
n+1
p (22)

vn+1
p ←− xn

p ,v
n
i (23)

Cn+1
p ←− xn

p ,v
n
i (24)

Fn+1
p ←− Fn

p ,C
n+1
p ,Fn

pc (25)

pn
i ←− xn

p ,C
n
p ,v

n
p ,P

n
p ,F

n
p ,F

n
pc (26)

vn
i ←− pn

i ,m
n
i (27)

Pn
p ←− Fn

p ,F
n
pc (28)

For back-propagation, the reversed variable dependency is:

xn
p −→ xn+1

p ,vn+1
p ,Cn+1

p ,pn
i ,m

n
i (29)

vn
p −→ pn

i ,x
n
p (30)

vn+1
p −→ pn+1

i ,xn+1
p (31)

vn
i −→ vn+1

p ,Cn+1
p (32)

Fn
p −→ Fn+1

p ,Pn
p ,p

n
i (33)

Fn
pc −→ Fn+1

p ,Pn
p ,p

n
i (34)

Cn+1
p −→ Fn+1

p (35)

Cn
p −→ pn

i (36)

pn
i −→ vn

i (37)

mn
i −→ vn

i (38)

Pn
p −→ pn

i (39)

(40)

6.2 Back-propagation initialization

To run back-propagation, the forward simulation needs to be completed first. After the

forward simulation is completed, we can start from the final timestep (Nt) grid and compute

16



∂L

∂m
Nt
i

for each grid node:

L(C) =
M−1∑
i=0

1

2
‖mNt

i −m
Nt
ic ‖2 (11 revisited)

=⇒ ∂L

∂mNt
i

= mNt
i −m

Nt
ic (41)

We can then compute ∂L

∂x
Nt
p

for each material point in the final time step:

mNt
i =

∑
i

N(xi − xNt
p )mp (15 revisited)

=⇒ ∂L

∂xNt
p

=
∂L

∂mNt
i

∂mNt
i

∂xNt
p

(42)

= mp

∑
i

∂L

∂mNt
i

∂N(xi − xNt
p )

∂xNt
p

(43)

We then set the other initial gradients that we will be using. Note that Fn
p and Cn

p do not

affect mn
i , their effects are only seen in future timesteps. Also, due to how we are running

the MPM algorithm, our order of computations, and our choice of notation, vn
p does not

affect xn
p when we are at timestep n. vn+1

p however affects xn+1
p , when we are at timestep n.

∂L

∂vNt
p

= 0 (44)

∂L

∂FNt
p

= 0 (45)

∂L

∂CNt
p

= 0 (46)

6.3 Reverse G2P

Now that we have initialized our values, we can start back-propagating. We call this reverse

G2P because we are calculating ∂L
∂

for grid properties using ∂L
∂

from particle properties. For

vn
i :

17



vn+1
p =

∑
i

N(xi − xn
p )vn

i (18 revisited)

Cn+1
p =

3

∆x2

∑
i

N(xi − xn
p )vn

i (xi − xn
p )T (19 revisited)

=⇒ ∂L

∂vn
i

=
∑
p

∂L

∂vn+1
p

∂vn+1
p

∂vn
i

+
∑
p

∂L

∂Cn+1
p

∂Cn+1
p

∂vn
i

(47)

=
∑
p

[
∂L

∂vn+1
p

N(xi − xn
p ) +

3

∆x2
N(xi − xn

p )
∂L

∂Cn+1
p

(xi − xn
p )

]
(48)

6.4 Reverse Grid Operations

For pn
i :

vn
i =

1

mn
i

pn
i (17 revisited)

=⇒ ∂L

∂pn
i

=
∂L

∂vn
i

∂vn
i

∂pn
i

(49)

=
∂L

∂vn
i

1

mn
i

(50)

For mn
i :

vn
i =

1

mn
i

pn
i (17 revisited)

=⇒ ∂L

∂mn
i

=
∂L

∂vn
i

∂vn
i

∂mn
i

(51)

= − 1

(mn
i )2

pn
i ·

∂L

∂vn
i

(52)

= − 1

mn
i

vn
i ·

∂L

∂vn
i

(53)
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6.5 Reverse P2G

For Pn
p :

pn
i =

∑
p

N(xi − xn
p )

[
mpv

n
p (1−∆tγ) + (− 3

∆x2
∆tV 0

p Pn
p (Fn

p + Fn
pc)

T +mpC
n
p )(xi − xn

p )

]
(16 revisited)

=⇒ ∂L

∂Pn
p

=
∑
i

(
∂pn

i

∂Pn
p

)T
∂L

∂pn
i

(54)

For Fn
p :

Fn+1
p = (I + ∆tCn+1

p )(Fn
p + Fn

pc) (20 revisited)

Pn
p = Pn

p (Fn
p + Fn

pc) (14 revisited)

pn
i =

∑
p

N(xi − xn
p )

[
mpv

n
p (1−∆tγ) + (− 3

∆x2
∆tV 0

p Pn
p (Fn

p + Fn
pc)

T +mpC
n
p )(xi − xn

p )

]
(16 revisited)

=⇒ ∂L

∂Fn
p

=
∂L

∂Fn
pc

(55)

=
∂Fn+1

p

∂Fn
p

:
∂L

∂Fn+1
p

+
∂Pn

p

∂Fn
p

:
∂L

∂Pn
p

+
∑
i

∂pn
i

∂Fn
p

:
∂L

∂pn
i

(56)

= (I + ∆tCn+1
p )T

∂L

∂Fn+1
p

+
∂2Ψ

∂Fn
p∂Fn

p

:
∂L

∂Pn
p

(57)

−
∑
i

3

∆x2
N(xi − xn

p )∆tV 0
p (xi − xn

p )
∂L

∂pn
i

T

Pn
p (58)
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For Cn
p :

Fn+1
p = (I + ∆tCn+1

p )(Fn
p + Fn

pc) (20 revisited)

pn
i =

∑
p

N(xi − xn
p )

[
mpv

n
p (1−∆tγ) + (− 3

∆x2
∆tV 0

p Pn
p (Fn

p + Fn
pc)

T +mpC
n
p )(xi − xn

p )

]
(16 revisited)

=⇒ ∂L

∂Cn
p

=
∑
i

∂pn
i

∂Cn
p

:
∂L

∂pn
i

(59)

=
∑
i

N(xi − xn
p )mp

∂L

∂pn
i

(xi − xn
p )T (60)
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For xn
p :

mn
i =

∑
i

N(xi − xn
p )mp (15 revisited)

pn
i =

∑
p

N(xi − xn
p )

[
mpv

n
p (1−∆tγ) + (− 3

∆x2
∆tV 0

p Pn
p (Fn

p + Fn
pc)

T +mpC
n
p )(xi − xn

p )

]
(16 revisited)

vn+1
p =

∑
i

N(xi − xn
p )vn

i (18 revisited)

Cn+1
p =

3

∆x2

∑
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7 Results

We demonstrate a variety of topology changing examples in Fig. 4.

7.1 MPM mass rendering

We use the same MPM grid node basis functions to sample each pixel on the rendered screen

using a fragment shader. These sampled pixels represent MPM particles in the continuum

that MPM attempts to represent. We use the mass of the sampled MPM pixel to color the

pixels, where large masses are red, medium masses are green, small masses are blue, and

zero or nearly-zero masses as white.

7.2 Mass ejection

Note that in some cases, the optimization decides that ejecting mass is the fastest way to

move toward the target shape (decreasing the loss function). This can produce interesting

and visually pleasing animations. A more drastic example of mass ejection can be seen in

Fig. 5.

7.3 Convergence

To speed up computation, the majority of optimizations produced in this figure are not run to

convergence. Running the optimization to convergence in this case means having an infinite

amount of temporal iterations, only ending the optimization after it fails to find a sufficient

decrease within an entire temporal iteration. Converged animations match the target shape

more accurately than non-converged animations, as seen in Fig. 5. This presents a trade-off

in computation speed versus target shape matching accuracy. Luckily, some artists would

prefer that the object doesn’t match the target shape too accurately, which would let them

take the advantage of computation speed without losing much in return.
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Figure 4: Control examples using the mass loss function (11). These have been rendered

using the mass rendering technique. (Top) genus 2 to genus 4, (middle) genus 1 to genus 4,

(bottom) genus 2 to genus 0.
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Figure 5: Initial and final states of a genus 4 object turning into a star. (Top) Non-converged

optimization. (Bottom) Converged optimization. Notice how the converged optimization

produces a sharper star, although it has more mass ejected. However, the mass missing

the target shape is mostly of low density (blue) in the converged example, while the mass

missing the target shape is mostly high density (red) in the non-converged example.
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7.4 Extending Animations

It is difficult to determine how many time steps the simulation should run for. If it is too

short, the object may not have enough time to morph into the target shape. If it is too

long, the optimization will take a long time. A simple trick is to just extend the animation.

The idea is to run an optimization to convergence, then take the final point cloud from

the optimization and use that as an initial point cloud for another optimization using the

same target shape. Not only can this technique be used to give objects an extra arbitrary

amount of time to morph into a target shape, but it can also just extend an animation where

an object needs to sustain a target shape. An object would need some extra deformation

gradient control to sustain a target shape since the loss function we minimize does not care

about the final velocities or deformation gradients, which means that if the simulation was

continued, the object could follow its velocity and deformation to morph into something that

is not the target shape. An example of extending animations can be seen in Fig. 6.

7.5 Color field results

We can also try producing color field animations. Examples are shown in figures 7 and 8.
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Figure 6: Initial and final states of a heart breaking apart in an extended animation. Each

row represents one optimization, and each new row uses the final point cloud from the

previous row as its initial point cloud. All rows are optimizing toward to the same target

shape. The first row shows that the optimization wasn’t given enough time to break the

heart apart. The second row gave the object the time it needed to break apart. In the final

row, you can see that the optimization already got as close to the target shape as it will get,

so it is just controlling deformation gradients to sustain the animation.
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Figure 7: Grid node color rendering. This is a color field optimization where the color

distribution in the circles wants to become half-half.

Figure 8: Grid node color rendering. This is a color field optimization where the red and

blue nodes want to switch.
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8 Enhancing the Loss Function

8.1 Higher target grid resolution

In this section, we run an experiment on how higher target grid resolutions affect. We simply

perform gradient descent using the ∂L

∂x
Nt
p

gradients. Our goal is not to produce a physics-

based animation, or an animation at all for that matter, but to examine what effects grid

resolution can have on our optimization. The goal of our method is to move the material

points in a physics-based way, and any way we choose to do that, we will need to use the

∂L

∂x
Nt
p

gradients.

Using the initial and target shapes in Figure 9, we apply this optimization experiment.

We see in Figure 10 that the higher resolution target grids allow for a more precise, even

distribution along the outline of the target shape. However, not all the points are able to

be shifted to the target shape. This is due to our use of cubic B-spline kernels for our grid

node shape functions. Higher resolution grids occupying the same space have the side effect

that each grid node has a small range of influence. When points are outside of this range of

influence, it will result in null gradients. This is why we see in the lower resolution target

grid examples, almost all points reach the target shape outline. This shows that the lower

resolution grid can give more gradient information regarding the high-level image of the

target shape.

We can combine the accuracy of higher resolution grids with the overall shape information

given by the lower resolution grids to improve our loss function. What we do is use multiple

overlapping target grids of varying resolutions for our mass and color loss functions. An

example of this can be seen in figure

8.2 Penalty Grids

If mass ejection is undesired, we can add an extra penalty to mass on nodes outside of the

target shape. We can add this as a term in the loss function with a variable αi, which is

a number greater than 1 if mn
iu = 0. This will put an extra penalty on nodes where the

corresponding target node has no mass.
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Figure 9: Left: initial image. Right: target image.

Figure 10: Top: material point rendering. Bottom: density field rendering. Left: position

optimization on mass loss function with a 128x128 target grid. Middle: position optimization

on mass loss function with a 64x64 target grid. Right: position optimization on mass loss

function with a 32x32 target grid.
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Figure 11: Circle to star morph. Top: using a combination of a 32x32 and 128x128 target

grid. Bottom: Using just a 128x128 target grid.
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Figure 12: A genus 4 object morphing into star. (Top) Converged optimization without

using a penalty grid. (Bottom) Converged optimization using a penalty grid. Note that

the object with the penalty grid wasn’t able to create the star shape as accurately. This

is unexpected result actually makes sense, since taking away mass ejections can inhibit the

objects ability to morph.

L(C) =
M−1∑
i=0

1

2
αi‖mn

i −mn
iu‖2 (72)

Sometimes mass ejection is required for the object to match the target shape, even when

the optimization is run to convergence. This effect can be seen in Fig. 12.
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9 Limitations and Future Work

We created a control framework which automatically modifies the deformation gradients of

material points. This effectively creates plastic deformation, which when combined with

MPM’s implicit topology handling, can produce a multitude of interest shape and topology

morphing examples. Using a physical simulation method like MPM also constrains the mor-

phing to be physically accurate. This can produce the mass ejection effect, as seen in Fig. 1

and Fig. 4.

9.1 Improving The Optimization Method

We are currently using a simple gradient descent method to minimize our loss functions.

However, we recognize that there are more sophisticated methods out there that are worth

experimenting with, such as adaptive gradient descent methods and momentum based meth-

ods.

9.2 Improving the position loss function

The position loss function has difficulty in creating target shapes, since there needs to be a

one-to-one mapping between target points and control points. One method we can try is giv-

ing users the option to define their target points by manually deforming their control points

using a cage-based skinning technique. Another option is to use more complicated techniques

in optimal transport. Regardless of how we do it, there will still be the limitation of control

points only having one target position, a restriction that the mass loss function does not have.

9.3 Material Parameter Control

Another step we could take is material parameter optimization. Different material param-

eters will produce different animations. These can be controls the animator uses, or the

animator can decide they want the MPM blob to alter its own material parameters for the
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best optimization.

9.4 Mass control

Finally, we can also experiment with material mass optimization. If the material could

alter its own mass, it could create areas of high mass to push on. There could also be many

different ways for the MPM blob to use mass optimization that we cannot think of. However,

we will need to be careful when using this with the mass loss function. We may need to

define a more general grid-based loss function for this technique.
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